Yantrr Electronic Systems

EMC TEST REPORT FOR

Cellular Wireless Router Model: ARCA-V206A

Tested To The Following Standards:

FCC Part 15 Subpart B Section 15.107 & 15.109

Report No.: 100084-3

Date of issue: July 17, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 28 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information3
Test Report Information
Report Authorization
Test Facility Information4
Software Versions4
Site Registration & Accreditation Information4
Summary of Results5
Modifications During Testing5
Conditions During Testing
Equipment Under Test5
FCC Part 15 Subpart B
15.107 AC Conducted Emissions6
15.109 Radiated Emissions17
Supplemental Information
Measurement Uncertainty27
Emissions Test Details

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Yantrr Electronic Systems 105 Serra Way #352 Milpitas, CA 95035 FRN: 0025861576 **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Namita Varma

Project Number: 100084

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

July 14, 2017 July 14, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02
EMITest Immunity	5.03.02

Site Registration & Accreditation Information

Location	CB #	CB # TAIWAN		TAIWAN CANADA		FCC	JAPAN	
Brea D, CA	US0060	SL2-IN-E-1146R	3082D-2	US1025	A-0147			

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart B

Test Procedure	Description	Modifications	Results
15.107 Class B	Conducted Emissions	Mod. #1	Pass
15.109 Class B	Radiated Emissions	Mod. #1	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
Modification #1: Removed paint and installed EMI conducted tape between the top cover and main chassis.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions None

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

. . . .

. .

Equipment Tested:	Equipment Tested:										
Device	Manufacturer	Model #	S/N								
Cellular Wireless Router	Yantrr Electronic Systems	ARCA-V206A	1706280001								
5V Power Supply	Mean Well	GS25U05-P1J	NA								
Support Equipment:											
Device	Manufacturer	Model #	S/N								
LCD Monitor	Samsung	B2230HD	Z2F1HCRC212809L								
16GB USB Drive	Sandisk	Cruzer Blade 16GB	NA								
16GB USB Drive	Sandisk	Cruzer Blade 16GB	NA								
128GB USB Drive	Sandisk	128GB	NA								

FCC PART 15 SUBPART B

15.107 AC Conducted Emissions

Test Notes: Conducted Disturbances at Mains Terminals, LISN method.

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N Olinda Place • Brea, CA 92823 • 714-993-6112						
Customer:	Yantrr Electronic Systems						
Specification:	15.107 AC Mains Class B - Average						
Work Order #:	100084	Date: 7/14/2017					
Test Type:	Conducted Emissions	Time: 16:35:59					
Tested By:	Don Nguyen	Sequence#: 1					
Software:	EMITest 5.03.02	120V 60Hz					

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Summont Equinments				

Support Equipment:

Device	Manufacturer	Model #	S/N		
Configuration 1					

Test Conditions / Notes:

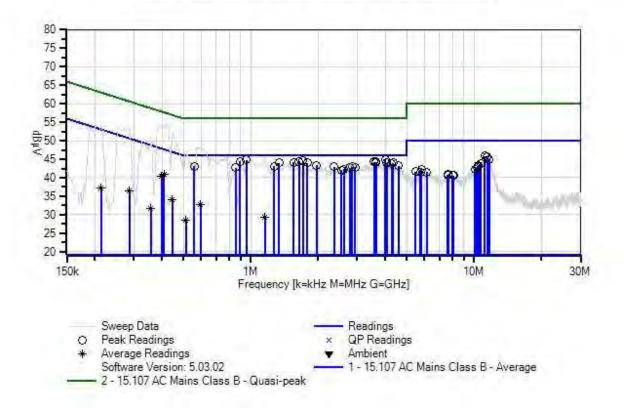
The EUT is placed on tabletop. Cellular, GPS, and Wi-Fi antenna ports are connected to antennas. 3x USB ports are connected to 3x USB thumb drives. Audio port is connected to an earphone. Ethernet port is connected to sections of cable. HDMI port is connected to support monitor in standby mode. I2C port is not populated. All wireless modules are set in receiver mode. Approved wireless modules installed in the EUT are:

Wi-Fi module: BL-R8723BT1 / FCC ID : S8J-R8723BT1 Cellular module: Telit: LE910-NAG, FCC ID Filing: RI7LE910NA

Antenna information:

GPS- operating frequency: 1575.42MHz, voltage: 3V-5V, manufacture and model unknown/generic. Wi-Fi- 5dBi gain, manufacture and model: unknown/generic. Cellular- 2.5dBi gain, manufacturer: Pulse Electronics, model: W1900

The manufacturer declares that the highest frequency generated or used in the device is 2462MHz.


Frequency range of measurement = 150kHz-30MHz RBW=9kHz,VBW=9kHz; Test Method: ANSI C63.4 (2014)

Site D

Test environment conditions: Temperature: 26°C, Relative Humidity: 48%, Pressure: 100kPa Modification # 1 was in place during testing.

Yantrr Electronic Systems WO#: 100084 Sequence#: 1 Date: 7/14/2017 15.107 AC Mains Class B - Average Test Lead: 120V 60Hz L1

Test Equipment:

ID	Asset #	Description	Calibration Date	Cal Due Date	
T1	ANP06085	Attenuator	SA18N10W-09	11/14/2016	11/14/2018
T2	ANP01910	Cable	RG-142	11/30/2015	11/30/2017
Т3	AN00847.1	50uH LISN-Line 1 (L1)	3816/2NM	3/14/2017	3/14/2018
	AN00847.1	50uH LISN-Line2 (L2)	3816/2NM	3/14/2017	3/14/2018
	AN02467	Spectrum Analyzer	E7405A	6/26/2017	6/26/2018
Τ4	AN02343	High Pass Filter	HE9615-150K- 50-720B	1/25/2017	1/25/2019

#	-	Measurement Data: Reading listed									
	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	4.008M	39.0	+5.7	+0.0	+0.1	+0.1	+0.0	44.9	46.0	-1.1	L1
2	958.406k	39.0	+5.7	+0.0	+0.0	+0.1	+0.0	44.8	46.0	-1.2	L1
3	1.716M	38.7	+5.7	+0.0	+0.0	+0.1	+0.0	44.5	46.0	-1.5	L1
4	895.249k	38.6	+5.7	+0.0	+0.0	+0.1	+0.0	44.4	46.0	-1.6	L1
5	1.644M	38.6	+5.7	+0.0	+0.0	+0.1	+0.0	44.4	46.0	-1.6	L1
6	3.575M	38.4	+5.7	+0.0	+0.1	+0.1	+0.0	44.3	46.0	-1.7	L1
7	3.647M	38.4	+5.7	+0.0	+0.1	+0.1	+0.0	44.3	46.0	-1.7	L1
8	3.629M	38.3	+5.7	+0.0	+0.1	+0.1	+0.0	44.2	46.0	-1.8	L1
9	1.554M	38.3	+5.7	+0.0	+0.0	+0.1	+0.0	44.1	46.0	-1.9	L1
10	1.788M	38.2	+5.7	+0.0	+0.0	+0.1	+0.0	44.0	46.0	-2.0	L1
11	1.337M	38.2	+5.7	+0.0	+0.0	+0.1	+0.0	44.0	46.0	-2.0	L1
12	4.333M	38.1	+5.7	+0.0	+0.1	+0.1	+0.0	44.0	46.0	-2.0	L1
13	4.062M	38.1	+5.7	+0.0	+0.1	+0.1	+0.0	44.0	46.0	-2.0	L1
14	4.270M	37.8	+5.7	+0.0	+0.1	+0.1	+0.0	43.7	46.0	-2.3	L1
15	1.969M	37.6	+5.7	+0.0	+0.0	+0.1	+0.0	43.4	46.0	-2.6	L1
16	4.594M	37.3	+5.7	+0.0	+0.1	+0.1	+0.0	43.2	46.0	-2.8	L1
17	557.235k	37.2	+5.7	+0.0	+0.0	+0.2	+0.0	43.1	46.0	-2.9	L1
18	1.274M	37.3	+5.7	+0.0	+0.0	+0.1	+0.0	43.1	46.0	-2.9	L1

19	2.366M	37.1	+5.7	+0.0	+0.0	+0.1	+0.0	42.9	46.0	-3.1	L1
20	2.844M	37.0	+5.7	+0.0	+0.1	+0.1	+0.0	42.9	46.0	-3.1	L1
21	2.934M	36.9	+5.7	+0.0	+0.1	+0.1	+0.0	42.8	46.0	-3.2	L1
22	2.772M	36.8	+5.7	+0.0	+0.1	+0.1	+0.0	42.7	46.0	-3.3	L1
23	857.207k	36.9	+5.7	+0.0	+0.0	+0.1	+0.0	42.7	46.0	-3.3	L1
24	2.619M	36.4	+5.7	+0.0	+0.1	+0.1	+0.0	42.3	46.0	-3.7	L1
25	2.546M	36.2	+5.7	+0.0	+0.0	+0.1	+0.0	42.0	46.0	-4.0	L1
26	11.199M	39.9	+5.7	+0.1	+0.1	+0.1	+0.0	45.9	50.0	-4.1	L1
27	11.443M	39.7	+5.7	+0.1	+0.1	+0.1	+0.0	45.7	50.0	-4.3	L1
28	11.704M	38.9	+5.7	+0.1	+0.1	+0.1	+0.0	44.9	50.0	-5.1	L1
29	10.721M	37.7	+5.7	+0.0	+0.2	+0.1	+0.0	43.7	50.0	-6.3	L1
30	10.450M	37.4	+5.7	+0.0	+0.2	+0.1	+0.0	43.4	50.0	-6.6	L1
31	408.158k Ave	35.2	+5.7	+0.0	+0.0	+0.1	+0.0	41.0	47.7	-6.7	L1
^	408.158k	48.3	+5.7	+0.0	+0.0	+0.1	+0.0	54.1	47.7	+6.4	L1
33	10.423M	37.0	+5.7	+0.0	+0.2	+0.1	+0.0	43.0	50.0	-7.0	L1
34	10.288M	36.8	+5.7	+0.0	+0.2	+0.1	+0.0	42.8	50.0	-7.2	L1
35	399.410k Ave	34.7	+5.7	+0.0	+0.0	+0.1	+0.0	40.5	47.9	-7.4	L1
^	399.410k	47.5	+5.7	+0.0	+0.0	+0.1	+0.0	53.3	47.9	+5.4	L1
37	5.813M	36.4	+5.7	+0.0	+0.1	+0.1	+0.0	42.3	50.0	-7.7	L1
38	10.080M	36.2	+5.7	+0.0	+0.2	+0.1	+0.0	42.2	50.0	-7.8	L1
39	10.179M	36.2	+5.7	+0.0	+0.2	+0.1	+0.0	42.2	50.0	-7.8	L1
40	5.479M	35.7	+5.7	+0.0	+0.1	+0.1	+0.0	41.6	50.0	-8.4	L1
41	6.155M	35.6	+5.7	+0.0	+0.1	+0.1	+0.0	41.5	50.0	-8.5	L1
42	5.749M	35.5	+5.7	+0.0	+0.1	+0.1	+0.0	41.4	50.0	-8.6	L1
43	7.680M	35.0	+5.7	+0.0	+0.1	+0.1	+0.0	40.9	50.0	-9.1	L1
44	7.626M	34.8	+5.7	+0.0	+0.1	+0.1	+0.0	40.7	50.0	-9.3	L1

45	8.014M	34.7	+5.7	+0.0	+0.1	+0.1	+0.0	40.6	50.0	-9.4	L1
46	8.113M	34.7	+5.7	+0.0	+0.1	+0.1	+0.0	40.6	50.0	-9.4	L1
47 A	446.336k Ave	28.2	+5.7	+0.0	+0.0	+0.1	+0.0	34.0	46.9	-12.9	L1
^	446.336k	46.3	+5.7	+0.0	+0.0	+0.1	+0.0	52.1	46.9	+5.2	L1
49 A	597.232k Ave	26.9	+5.7	+0.0	+0.0	+0.2	+0.0	32.8	46.0	-13.2	L1
^	597.231k	42.5	+5.7	+0.0	+0.0	+0.2	+0.0	48.4	46.0	+2.4	L1
51 A	286.351k Ave	30.5	+5.7	+0.0	+0.0	+0.1	+0.0	36.3	50.6	-14.3	L1
^	286.351k	48.1	+5.7	+0.0	+0.0	+0.1	+0.0	53.9	50.6	+3.3	L1
53 A	213.631k Ave	31.2	+5.7	+0.0	+0.0	+0.2	+0.0	37.1	53.1	-16.0	L1
^	213.630k	47.9	+5.7	+0.0	+0.0	+0.2	+0.0	53.8	53.1	+0.7	L1
55 A	1.157M Ave	23.5	+5.7	+0.0	+0.0	+0.1	+0.0	29.3	46.0	-16.7	L1
^	1.157M	39.6	+5.7	+0.0	+0.0	+0.1	+0.0	45.4	46.0	-0.6	L1
57 A	357.254k Ave	25.9	+5.7	+0.0	+0.0	+0.1	+0.0	31.7	48.8	-17.1	L1
^	357.253k	44.9	+5.7	+0.0	+0.0	+0.1	+0.0	50.7	48.8	+1.9	L1
59 A	513.603k Ave	22.7	+5.7	+0.0	+0.0	+0.2	+0.0	28.6	46.0	-17.4	L1
^	513.603k	41.5	+5.7	+0.0	+0.0	+0.2	+0.0	47.4	46.0	+1.4	L1

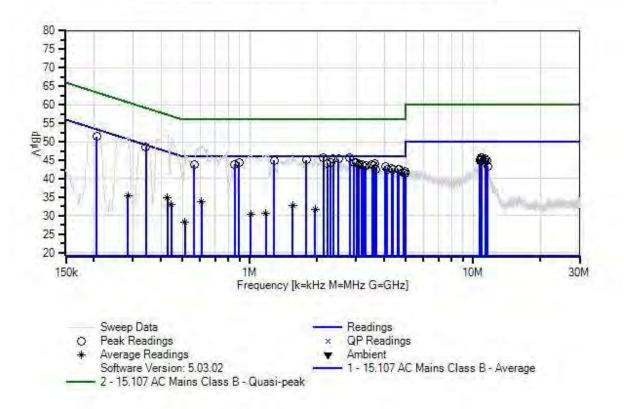
Test Location:	CKC Laboratories, Inc. • 110 N Olinda Place •	Brea, CA 9282	23 • 714-993-6112
Customer:	Yantrr Electronic Systems		
Specification:	15.107 AC Mains Class B - Average		
Work Order #:	100084	Date:	7/14/2017
Test Type:	Conducted Emissions	Time:	16:44:13
Tested By:	Don Nguyen	Sequence#:	2
Software:	EMITest 5.03.02		120V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				
Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

The EUT is placed on tabletop. Cellular, GPS, and Wi-Fi antenna ports are connected to antennas. 3x USB ports are connected to 3x USB thumb drives. Audio port is connected to an earphone. Ethernet port is connected to sections of cable. HDMI port is connected to support monitor in standby mode. I2C port is not populated. All wireless modules are set in receiver mode. Approved wireless modules installed in the EUT are: Wi-Fi module: BL-R8723BT1 / FCC ID : S8J-R8723BT1 Cellular module: Telit: LE910-NAG, FCC ID Filing: RI7LE910NA Antenna information: GPS- operating frequency: 1575.42MHz, voltage: 3V-5V, manufacture and model unknown/generic. Wi-Fi-5dBi gain, manufacture and model: unknown/generic. Cellular- 2.5dBi gain, manufacturer: Pulse Electronics, model: W1900 The manufacturer declares that the highest frequency generated or used in the device is 2462MHz. Frequency range of measurement = 150kHz-30MHz RBW=9kHz,VBW=9kHz; Test Method: ANSI C63.4 (2014)


Site D

Test environment conditions: Temperature: 26°C, Relative Humidity: 48%, Pressure: 100kPa

Modification #1 was in place during testing.

Yantrr Electronic Systems WO#: 100084 Sequence#: 2 Date: 7/14/2017 15.107 AC Mains Class B - Average Test Lead: 120V 60Hz L2

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06085	Attenuator	SA18N10W-09	11/14/2016	11/14/2018
T2	ANP01910	Cable	RG-142	11/30/2015	11/30/2017
	AN00847.1	50uH LISN-Line 1 (L1)	3816/2NM	3/14/2017	3/14/2018
Т3	AN00847.1	50uH LISN-Line2 (L2)	3816/2NM	3/14/2017	3/14/2018
	AN02467	Spectrum Analyzer	E7405A	6/26/2017	6/26/2018
T4	AN02343	High Pass Filter	HE9615-150K- 50-720B	1/25/2017	1/25/2019

		· Re		ted by ma	ugm.			Test Lead	J. L2		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	2.140M	39.9	+5.7	+0.0	+0.0	+0.1	+0.0	45.7	46.0	-0.3	L2
2	2.799M	39.8	+5.7	+0.0	+0.1	+0.1	+0.0	45.7	46.0	-0.3	L2
3	342.709k	42.8	+5.7	+0.0	+0.0	+0.1	+0.0	48.6	49.1	-0.5	L2
4	2.501M	39.5	+5.7	+0.0	+0.1	+0.1	+0.0	45.4	46.0	-0.6	L2
5	2.366M	39.4	+5.7	+0.0	+0.1	+0.1	+0.0	45.3	46.0	-0.7	L2
6	1.788M	39.3	+5.7	+0.0	+0.0	+0.1	+0.0	45.1	46.0	-0.9	L2
7	1.283M	39.2	+5.7	+0.0	+0.0	+0.1	+0.0	45.0	46.0	-1.0	L2
8	895.249k	38.6	+5.7	+0.0	+0.0	+0.1	+0.0	44.4	46.0	-1.6	L2
9	2.303M	38.5	+5.7	+0.0	+0.1	+0.1	+0.0	44.4	46.0	-1.6	L2
10	2.934M	38.5	+5.7	+0.0	+0.1	+0.1	+0.0	44.4	46.0	-1.6	L2
11	3.007M	38.4	+5.7	+0.0	+0.1	+0.1	+0.0	44.3	46.0	-1.7	L2
12	2.231M	38.4	+5.7	+0.0	+0.0	+0.1	+0.0	44.2	46.0	-1.8	L2
13	206.358k	45.5	+5.7	+0.0	+0.0	+0.2	+0.0	51.4	53.4	-2.0	L2
14	3.629M	38.1	+5.7	+0.0	+0.1	+0.1	+0.0	44.0	46.0	-2.0	L2
15	857.207k	38.1	+5.7	+0.0	+0.0	+0.1	+0.0	43.9	46.0	-2.1	L2
16	3.178M	38.0	+5.7	+0.0	+0.1	+0.1	+0.0	43.9	46.0	-2.1	L2
17	564.507k	37.9	+5.7	+0.0	+0.0	+0.2	+0.0	43.8	46.0	-2.2	L2
18	3.079M	37.9	+5.7	+0.0	+0.1	+0.1	+0.0	43.8	46.0	-2.2	L2

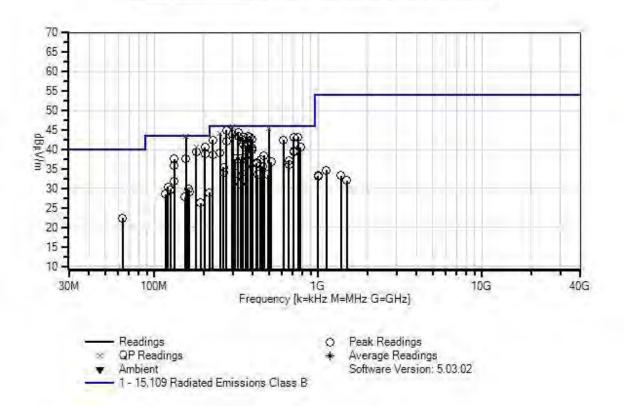
19	3.530M	37.9	+5.7	+0.0	+0.1	+0.1	+0.0	43.8	46.0	-2.2	L2
20	3.584M	37.7	+5.7	+0.0	+0.1	+0.1	+0.0	43.6	46.0	-2.4	L2
21	3.313M	37.6	+5.7	+0.0	+0.1	+0.1	+0.0	43.5	46.0	-2.5	L2
22	3.250M	37.4	+5.7	+0.0	+0.1	+0.1	+0.0	43.3	46.0	-2.7	L2
23	4.053M	37.3	+5.7	+0.0	+0.1	+0.1	+0.0	43.2	46.0	-2.8	L2
24	4.324M	36.9	+5.7	+0.0	+0.1	+0.1	+0.0	42.8	46.0	-3.2	L2
25	3.683M	36.7	+5.7	+0.0	+0.1	+0.1	+0.0	42.6	46.0	-3.4	L2
26	4.125M	36.7	+5.7	+0.0	+0.1	+0.1	+0.0	42.6	46.0	-3.4	L2
27	4.603M	36.7	+5.7	+0.0	+0.1	+0.1	+0.0	42.6	46.0	-3.4	L2
28	4.658M	36.6	+5.7	+0.0	+0.1	+0.1	+0.0	42.5	46.0	-3.5	L2
29	4.396M	36.5	+5.7	+0.0	+0.1	+0.1	+0.0	42.4	46.0	-3.6	L2
30	4.937M	36.1	+5.7	+0.0	+0.1	+0.1	+0.0	42.0	46.0	-4.0	L2
31	4.874M	35.9	+5.7	+0.0	+0.1	+0.1	+0.0	41.8	46.0	-4.2	L2
32	10.856M	39.6	+5.7	+0.0	+0.2	+0.1	+0.0	45.6	50.0	-4.4	L2
33	10.946M	39.6	+5.7	+0.0	+0.2	+0.1	+0.0	45.6	50.0	-4.4	L2
34	11.325M	39.4	+5.7	+0.1	+0.2	+0.1	+0.0	45.5	50.0	-4.5	L2
35	4.973M	35.5	+5.7	+0.0	+0.1	+0.1	+0.0	41.4	46.0	-4.6	L2
36	10.793M	39.2	+5.7	+0.0	+0.2	+0.1	+0.0	45.2	50.0	-4.8	L2
37	10.838M	39.2	+5.7	+0.0	+0.2	+0.1	+0.0	45.2	50.0	-4.8	L2
38	11.533M	38.8	+5.7	+0.1	+0.2	+0.1	+0.0	44.9	50.0	-5.1	L2
39	10.721M	38.8	+5.7	+0.0	+0.2	+0.1	+0.0	44.8	50.0	-5.2	L2

40	11.343M	38.5	+5.7	+0.1	+0.2	+0.1	+0.0	44.6	50.0	-5.4	L2
41	11.623M	37.2	+5.7	+0.1	+0.2	+0.1	+0.0	43.3	50.0	-6.7	L2
42	608.140k Ave	27.8	+5.7	+0.0	+0.0	+0.2	+0.0	33.7	46.0	-12.3	L2
^	608.139k	42.8	+5.7	+0.0	+0.0	+0.2	+0.0	48.7	46.0	+2.7	L2
44	428.156k Ave	29.0	+5.7	+0.0	+0.0	+0.1	+0.0	34.8	47.3	-12.5	L2
^	428.156k	46.4	+5.7	+0.0	+0.0	+0.1	+0.0	52.2	47.3	+4.9	L2
46	1.554M Ave	26.9	+5.7	+0.0	+0.0	+0.1	+0.0	32.7	46.0	-13.3	L2
^	1.554M	40.2	+5.7	+0.0	+0.0	+0.1	+0.0	46.0	46.0	+0.0	L2
48	446.336k Ave	27.2	+5.7	+0.0	+0.0	+0.1	+0.0	33.0	46.9	-13.9	L2
^	446.336k	45.2	+5.7	+0.0	+0.0	+0.1	+0.0	51.0	46.9	+4.1	L2
50	1.960M Ave	26.0	+5.7	+0.0	+0.0	+0.1	+0.0	31.8	46.0	-14.2	L2
^	1.960M	40.0	+5.7	+0.0	+0.0	+0.1	+0.0	45.8	46.0	-0.2	L2
52	284.533k Ave	29.6	+5.7	+0.0	+0.0	+0.1	+0.0	35.4	50.7	-15.3	L2
^	284.533k	45.7	+5.7	+0.0	+0.0	+0.1	+0.0	51.5	50.7	+0.8	L2
54	1.184M Ave	24.8	+5.7	+0.0	+0.0	+0.1	+0.0	30.6	46.0	-15.4	L2
^	1.184M	40.8	+5.7	+0.0	+0.0	+0.1	+0.0	46.6	46.0	+0.6	L2
56	1.013M Ave	24.6	+5.7	+0.0	+0.0	+0.1	+0.0	30.4	46.0	-15.6	L2
^	1.013M	40.5	+5.7	+0.0	+0.0	+0.1	+0.0	46.3	46.0	+0.3	L2
58	511.785k Ave	22.3	+5.7	+0.0	+0.0	+0.2	+0.0	28.2	46.0	-17.8	L2
^	511.784k	41.6	+5.7	+0.0	+0.0	+0.2	+0.0	47.5	46.0	+1.5	L2

Test Setup Photos

Page 16 of 28 Report No.: 100084-3

15.109 Radiated Emissions


Test Notes: Radiated disturbances emanating from enclosure.

Test Setup / Conditions / Data

Specification: Work Order #: Test Type: Tested By: Software:	Yantrr Electronic Systems 15.109 Radiated Emissions Cla 100084 Maximized Emissions Don Nguyen EMITest 5.03.02	D	ate: 7/14/2017 me: 16:07:59 ce#: 0	
Equipment Tes				
Device Configuration 1	Manufacturer	Model #	S/N	
Support Equip	nent:			
Device	Manufacturer	Model #	S/N	
Configuration 1				
sections of cable	• 3x USB thumb drives. Audio po . HDMI port is connected to support			
Approved wirele Wi-Fi module: B Cellular module: Antenna informa GPS- operating f Wi-Fi- 5dBi gair	lules are set in receiver mode. ss modules installed in the EUT are EL-R8723BT1 / FCC ID : S8J-R872 Telit: LE910-NAG, FCC ID Filing	e: 23BT1 g: RI7LE910NA V-5V, manufacture an n/generic.		
Approved wirele Wi-Fi module: B Cellular module: Antenna informa GPS- operating f Wi-Fi- 5dBi gair Cellular- 2.5dBi	lules are set in receiver mode. ss modules installed in the EUT are EL-R8723BT1 / FCC ID : S8J-R872 Telit: LE910-NAG, FCC ID Filing tion: Grequency: 1575.42MHz, voltage: 3 n, manufacture and model: unknown	e: 23BT1 g: RI7LE910NA V-5V, manufacture an n/generic. ics, model: W1900	d model unknown/generic.	
Approved wirele Wi-Fi module: B Cellular module: Antenna informa GPS- operating f Wi-Fi- 5dBi gair Cellular- 2.5dBi The manufacture Frequency range 30-1000MHz, R 1000-12000MHz	lules are set in receiver mode. ss modules installed in the EUT are EL-R8723BT1 / FCC ID : S8J-R872 Telit: LE910-NAG, FCC ID Filing tion: frequency: 1575.42MHz, voltage: 3 a, manufacture and model: unknown gain, manufacturer: Pulse Electron	e: 23BT1 g: RI7LE910NA V-5V, manufacture an n/generic. ics, model: W1900	d model unknown/generic.	A.
Approved wirele Wi-Fi module: B Cellular module: Antenna informa GPS- operating f Wi-Fi- 5dBi gair Cellular- 2.5dBi The manufacture Frequency range 30-1000MHz, R 1000-12000MHz	lules are set in receiver mode. ss modules installed in the EUT are scheme and stalled in the EUT are click LE910-NAG, FCC ID Filing tion: frequency: 1575.42MHz, voltage: 3 a, manufacture and model: unknown gain, manufacturer: Pulse Electron er declares that the highest frequence of measurement = 30-12310MHz. BW=120kHz,VBW=120kHz; z, RBW=1MHz,VBW=1MHz;	e: 23BT1 g: RI7LE910NA V-5V, manufacture an n/generic. ics, model: W1900	d model unknown/generic.	
Approved wirele Wi-Fi module: B Cellular module: Antenna informa GPS- operating f Wi-Fi- 5dBi gair Cellular- 2.5dBi The manufacture Frequency range 30-1000MHz, Ri 1000-12000MHz Test Method: A Site D	lules are set in receiver mode. ss modules installed in the EUT are scheme and stalled in the EUT are click LE910-NAG, FCC ID Filing tion: frequency: 1575.42MHz, voltage: 3 a, manufacture and model: unknown gain, manufacturer: Pulse Electron er declares that the highest frequence of measurement = 30-12310MHz. BW=120kHz,VBW=120kHz; z, RBW=1MHz,VBW=1MHz;	e: 23BT1 g: RI7LE910NA V-5V, manufacture an n/generic. ics, model: W1900 y generated or used in	d model unknown/generic. the device is 2462MHz.	

Yantrr Electronic Systems WO#: 100084 Sequence#: 0 Date: 7/14/2017 15.109 Radiated Emissions Class B. Test Distance: 3 Meters. Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00010	Preamp	8447D	3/14/2016	3/14/2018
T2	ANP05283	Attenuator	ATT-0218-06-	5/5/2016	5/5/2018
			NNN-02		
Т3	ANP05569	Cable-Amplitude	RG-214/U	12/7/2016	12/7/2018
		+15C to +45C (dB)			
T4	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T5	ANP06978	Cable	Sucoflex 104A	4/5/2016	4/5/2018
T6	ANP04382	Cable	LDF-50	6/6/2016	6/6/2018
	AN02672	Spectrum Analyzer	E4446A	3/2/2017	3/2/2019
T7	AN00787	Preamp	83017A	6/9/2017	6/9/2019
Т8	AN01646	Horn Antenna	3115	3/4/2016	3/4/2018
Т9	ANP06554	Cable	32022-29094K-	12/30/2015	12/30/2017
			29094K-24TC		
T10	ANP07139	Cable	ANDL1-	3/1/2017	3/1/2019
			PNMNM-48		

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	Τ7	T8					
			T9	T10							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	299.993M	48.6	-26.6	+5.8	+1.8	+14.2	+0.0	45.8	46.0	-0.2	Vert
	QP		+0.2	+1.8	+0.0	+0.0					
			+0.0	+0.0							
^	299.993M	49.3	-26.6	+5.8	+1.8	+14.2	+0.0	46.5	46.0	+0.5	Vert
			+0.2	+1.8	+0.0	+0.0					
			+0.0	+0.0							
3		50.5	-26.9	+5.8	+1.3	+11.1	+0.0	43.3	43.5	-0.2	Vert
	QP		+0.2	+1.3	+0.0	+0.0					
			+0.0	+0.0							
4		50.5	-26.9	+5.8	+1.3	+11.1	+0.0	43.3	43.5	-0.2	Vert
	QP		+0.2	+1.3	+0.0	+0.0					
			+0.0	+0.0							
^	155.995M	51.6	-26.9	+5.8	+1.3	+11.1	+0.0	44.4	43.5	+0.9	Vert
			+0.2	+1.3	+0.0	+0.0					
			+0.0	+0.0							
^	156.000M	51.1	-26.9	+5.8	+1.3	+11.1	+0.0	43.9	43.5	+0.4	Vert
			+0.2	+1.3	+0.0	+0.0					
			+0.0	+0.0							
7	000000111	44.0	-28.0	+5.8	+2.3	+18.6	+0.0	45.4	46.0	-0.6	Horiz
	QP		+0.3	+2.4	+0.0	+0.0					
<u> </u>	5 00 0003 5		+0.0	+0.0		10.6		16.0	16.0		
^	500.000M	45.4	-28.0	+5.8	+2.3	+18.6	+0.0	46.8	46.0	+0.8	Horiz
			+0.3	+2.4	+0.0	+0.0					
	275 0053 5	40.1	+0.0	+0.0	.1.5	114.0		44.0	16.0	1.1	X 7 .
9	275.995M	48.1	-26.6	+5.8	+1.7	+14.0	+0.0	44.9	46.0	-1.1	Vert
			+0.2	+1.7	+0.0	+0.0					
			+0.0	+0.0							

10	222 00014	16 1	767	150	⊥1 0	±14.0		111	160	1 6	Uaria
10	323.990M	46.4	-26.7 +0.2	+5.8 +1.9	$^{+1.9}_{+0.0}$	$^{+14.9}_{+0.0}$	+0.0	44.4	46.0	-1.6	Horiz
			+0.2 +0.0	+1.9 +0.0	FU.U	+0.0					
11	251.990M	47.8	-26.6	+5.8	+1.6	+13.8	+0.0	44.2	46.0	-1.8	Vert
	QP	17.0	+0.2	+1.6	+0.0	+0.0	. 0.0	11.2	10.0	1.0	vent
	×1		+0.0	+0.0	0.0	. 0.0					
^	251.990M	48.4	-26.6	+5.8	+1.6	+13.8	+0.0	44.8	46.0	-1.2	Vert
			+0.2	+1.6	+0.0	+0.0					
			+0.0	+0.0							
13	300.000M	46.7	-26.6	+5.8	+1.8	+14.2	+0.0	43.9	46.0	-2.1	Horiz
			+0.2	+1.8	+0.0	+0.0					
			+0.0	+0.0							
14	324.000M	45.3	-26.7	+5.8	+1.9	+14.9	+0.0	43.3	46.0	-2.7	Vert
			+0.2	+1.9	+0.0	+0.0					
			+0.0	+0.0							
15	372.000M	44.1	-27.1	+5.8	+2.0	+16.2	+0.0	43.3	46.0	-2.7	Horiz
			+0.3	+2.0	+0.0	+0.0					
			+0.0	+0.0							
16	707.985M	36.9	-28.0	+5.8	+3.0	+22.2	+0.0	43.2	46.0	-2.8	Horiz
			+0.4	+2.9	+0.0	+0.0					
			+0.0	+0.0							
17	384.000M	43.6	-27.2	+5.8	+2.1	+16.5	+0.0	43.2	46.0	-2.8	Vert
			+0.3	+2.1	+0.0	+0.0					
10			+0.0	+0.0					16.0	• •	
18	756.000M	35.8	-27.9	+5.8	+3.1	+23.0	+0.0	43.2	46.0	-2.8	Vert
			+0.4	+3.0	+0.0	+0.0					
10	248.00014	44.2	+0.0	+0.0	12.0	15.0		42.1	46.0	2.0	TT '
19	348.000M	44.3	-26.9	+5.8	+2.0	+15.6	+0.0	43.1	46.0	-2.9	Horiz
			+0.3 +0.0	$^{+2.0}_{+0.0}$	+0.0	+0.0					
20	180.000M	49.4	-26.9	+5.8	+1.3	+9.4	+0.0	40.6	43.5	-2.9	Vert
	QP	49.4	+0.2	+3.8 $+1.4$	+0.0	+9.4 +0.0	10.0	40.0	45.5	-2.9	ven
	QI		+0.2 $+0.0$	+0.0	10.0	10.0					
^	180.000M	50.2	-26.9	+5.8	+1.3	+9.4	+0.0	41.4	43.5	-2.1	Vert
	100.000101	50.2	+0.2	+1.4	+0.0	+0.0	. 0.0	11.7	13.5	2.1	
			+0.0	+0.0	0.0						
^	180.000M	47.8	-26.9	+5.8	+1.3	+9.4	+0.0	39.0	43.5	-4.5	Vert
			+0.2	+1.4	+0.0	+0.0					
			+0.0	+0.0							
23	203.995M	48.3	-26.7	+5.8	+1.4	+10.1	+0.0	40.6	43.5	-2.9	Vert
			+0.2	+1.5	+0.0	+0.0					
			+0.0	+0.0							
24	396.000M	43.0	-27.4	+5.8	+2.1	+16.8	+0.0	42.7	46.0	-3.3	Vert
			+0.3	+2.1	+0.0	+0.0					
			+0.0	+0.0						<u> </u>	
25	612.008M	38.2	-28.1	+5.8	+2.7	+20.8	+0.0	42.4	46.0	-3.6	Vert
			+0.4	+2.6	+0.0	+0.0					
			+0.0	+0.0							
26	347.990M	43.6	-26.9	+5.8	+2.0	+15.6	+0.0	42.4	46.0	-3.6	Horiz
			+0.3	+2.0	+0.0	+0.0					
			+0.0	+0.0							

27	228.000M	47.9	-26.7	+5.8	+1.5	+12.1	+0.0	42.4	46.0	-3.6	Horiz
21	220.000W	47.9	+0.2	+3.8 +1.6	$^{+1.5}_{+0.0}$	+12.1 +0.0	0.0	⊣ ∠.4	40.0	-3.0	TIOUZ
			+0.2 +0.0	+1.0 +0.0	10.0	10.0					
28	276.000M	45.4	-26.6	+5.8	+1.7	+14.0	+0.0	42.2	46.0	-3.8	Horiz
20	2/0.000101	тт	+0.2	+3.8 $+1.7$	+0.0	+14.0 +0.0	0.0	72.2	10.0	-5.0	TIOUZ
			+0.2 $+0.0$	+0.0	10.0	0.0					
29	179.998M	48.3	-26.9	+5.8	+1.3	+9.4	+0.0	39.5	43.5	-4.0	Horiz
27	1 / 2 / 2 / 2 / 0111	10.5	+0.2	+1.4	+0.0	+0.0	. 0.0	57.5	13.3	1.0	110112
			+0.0	+0.0	0.0	.0.0					
30	372.000M	42.5	-27.1	+5.8	+2.0	+16.2	+0.0	41.7	46.0	-4.3	Vert
20	0,200000		+0.3	+2.0	+0.0	+0.0	0.0	,			
			+0.0	+0.0							
31	348.000M	42.7	-26.9	+5.8	+2.0	+15.6	+0.0	41.5	46.0	-4.5	Vert
_			+0.3	+2.0	+0.0	+0.0					
			+0.0	+0.0							
32	204.000M	46.5	-26.7	+5.8	+1.4	+10.1	+0.0	38.8	43.5	-4.7	Horiz
			+0.2	+1.5	+0.0	+0.0					
			+0.0	+0.0							
33	371.993M	41.9	-27.1	+5.8	+2.0	+16.2	+0.0	41.1	46.0	-4.9	Horiz
			+0.3	+2.0	+0.0	+0.0					
			+0.0	+0.0							
34	360.000M	41.7	-27.0	+5.8	+2.0	+15.9	+0.0	40.7	46.0	-5.3	Horiz
			+0.3	+2.0	+0.0	+0.0					
			+0.0	+0.0							
35	781.133M	32.3	-27.8	+5.9	+3.2	+23.5	+0.0	40.6	46.0	-5.4	Vert
			+0.4	+3.1	+0.0	+0.0					
			+0.0	+0.0			-				
36	396.000M	40.7	-27.4	+5.8	+2.1	+16.8	+0.0	40.4	46.0	-5.6	Horiz
			+0.3	+2.1	+0.0	+0.0					
L	1.5.6.0.2.5	4 4 9	+0.0	+0.0					10 -		
37	156.003M	44.9	-26.9	+5.8	+1.3	+11.1	+0.0	37.7	43.5	-5.8	Horiz
			+0.2	+1.3	+0.0	+0.0					
	122 0003 5	44.0	+0.0	+0.0	.1.0	10.1		27.5	40.5	<i>c</i> ^	TT '
38	132.000M	44.0	-27.0	+5.8	+1.2	+12.1	+0.0	37.5	43.5	-6.0	Horiz
			+0.2	$^{+1.2}_{+0.0}$	+0.0	+0.0					
20	205.00514	40.2	+0.0	+0.0	10.1	160		40.0	16.0	()	II. '-
39	395.995M	40.3	-27.4	+5.8	+2.1	+16.8	+0.0	40.0	46.0	-6.0	Horiz
			$^{+0.3}_{+0.0}$	+2.1	+0.0	+0.0					
40	708.008M	33.3		+0.0 +5.8	+3.0	+22.2	+0.0	39.6	46.0	-6.4	Vort
40	/08.008M	55.5	-28.0 +0.4	+5.8 +2.9	+3.0 +0.0	+22.2 +0.0	± 0.0	39.0	40.0	-0.4	Vert
			+0.4 +0.0	+2.9 +0.0	FU.U	+0.0					
41	708.000M	33.2	-28.0	+0.0 +5.8	+3.0	+22.2	+0.0	39.5	46.0	-6.5	Horiz
41	/00.000101	55.4	+0.4	+3.8 +2.9	+3.0 $+0.0$	+22.2 +0.0	0.0	59.5	-0.0	-0.5	TIOUZ
			+0.4 $+0.0$	+2.9 +0.0	0.0	0.0					
42	252.000M	42.7	-26.6	+5.8	+1.6	+13.8	+0.0	39.1	46.0	-6.9	Horiz
	252.000101	74.1	+0.2	+1.6	+0.0	+0.0	0.0	57.1	40.0	0.7	110112
			+0.2 $+0.0$	+0.0	. 0.0	. 0.0					
43	228.000M	44.2	-26.7	+5.8	+1.5	+12.1	+0.0	38.7	46.0	-7.3	Vert
		11.2	+0.2	+1.6	+0.0	+0.0	0.0	20.7	10.0	,	
			+0.0	+0.0	0.0	0.0					
L			2.0	5.0							

4.4	467 00214	27.4	27.0	150	10.0	+10.1		20.4	16.0	77	N 7. 4
44	467.983M	37.4	-27.8	+5.8	+2.3	+18.1	+0.0	38.4	46.0	-7.6	Vert
			$^{+0.3}_{+0.0}$	$^{+2.3}_{+0.0}$	+0.0	+0.0					
15	121 00014	42.2			11.0	+12.1		25.0	12 5	77	II
45	131.990M	42.3	-27.0 +0.2	+5.8	+1.2	+12.1	+0.0	35.8	43.5	-7.7	Horiz
			+0.2 +0.0	$^{+1.2}_{+0.0}$	+0.0	+0.0					
46	360.000M	38.8	-27.0	+5.8	+2.0	+15.9	+0.0	37.8	46.0	-8.2	Vert
40	300.000M	30.0	+0.3	+3.8 +2.0	+2.0 +0.0	+13.9 +0.0	± 0.0	57.0	40.0	-0.2	ven
			+0.0	+0.0	10.0	10.0					
47	336.000M	39.1	-26.8	+5.8	+1.9	+15.3	+0.0	37.5	46.0	-8.5	Horiz
77	550.00011	57.1	+0.3	+1.9	+0.0	+0.0	10.0	57.5	40.0	-0.5	TIOTIZ
			+0.0	+0.0	10.0	0.0					
48	312.000M	39.8	-26.7	+5.8	+1.9	+14.6	+0.0	37.5	46.0	-8.5	Horiz
10	512.000101	57.0	+0.2	+1.9	+0.0	+0.0	. 0.0	57.5	10.0	0.0	TIONE
			+0.0	+0.0	0.0	. 0.0					
49	443.995M	36.7	-27.7	+5.8	+2.3	+17.7	+0.0	37.3	46.0	-8.7	Horiz
			+0.3	+2.2	+0.0	+0.0					
			+0.0	+0.0							
50	660.008M	31.8	-28.1	+5.8	+2.8	+21.5	+0.0	37.0	46.0	-9.0	Vert
			+0.4	+2.8	+0.0	+0.0					
			+0.0	+0.0							
51	515.995M	35.0	-28.0	+5.8	+2.4	+18.9	+0.0	36.8	46.0	-9.2	Horiz
			+0.3	+2.4	+0.0	+0.0					
			+0.0	+0.0							
52	419.995M	36.4	-27.5	+5.8	+2.2	+17.3	+0.0	36.6	46.0	-9.4	Horiz
			+0.3	+2.1	+0.0	+0.0					
			+0.0	+0.0							
53	420.000M	36.1	-27.5	+5.8	+2.2	+17.3	+0.0	36.3	46.0	-9.7	Vert
			+0.3	+2.1	+0.0	+0.0					
			+0.0	+0.0							
54	659.995M	30.9	-28.1	+5.8	+2.8	+21.5	+0.0	36.1	46.0	-9.9	Horiz
			+0.4	+2.8	+0.0	+0.0					
			+0.0	+0.0							
55	360.000M	36.7	-27.0	+5.8	+2.0	+15.9	+0.0	35.7	46.0	-10.3	Vert
			+0.3	+2.0	+0.0	+0.0					
-			+0.0	+0.0							
56	456.000M	34.9	-27.7	+5.8	+2.3	+17.9	+0.0	35.7	46.0	-10.3	Vert
			+0.3	+2.2	+0.0	+0.0					
	262.00014	20.7	+0.0	+0.0	1 7	12.0		25.4	46.0	10.0	N 7
57	263.990M	38.7	-26.6	+5.8	+1.7	+13.9	+0.0	35.4	46.0	-10.6	Vert
			+0.2	+1.7	+0.0	+0.0					
50	122 00214	20 1	+0.0	+0.0	110	12.1		21.0	12 5	11.6	II.a!-
58	132.003M	38.4	-27.0	+5.8	+1.2	+12.1	+0.0	31.9	43.5	-11.6	Horiz
			$^{+0.2}_{+0.0}$	$^{+1.2}_{+0.0}$	+0.0	+0.0					
59	264.000M	37.5	-26.6	+0.0 +5.8	+1.7	+13.9	+0.0	34.2	46.0	-11.8	Horiz
59	204.000M	51.5	+0.2	+3.8 +1.7	$^{+1.7}$ +0.0	+13.9 +0.0	+0.0	34.2	40.0	-11.0	HOLIZ
			+0.2 +0.0	+1.7 +0.0	10.0	10.0					
60	312.000M	36.2	-26.7	+5.8	+1.9	+14.6	+0.0	33.9	46.0	-12.1	Vert
00	512.000101	50.2	+0.2	+3.8 $+1.9$	+1.9 $+0.0$	+0.0	0.0	53.9	10.0	-12.1	vert
			+0.2 $+0.0$	+1.9 +0.0	0.0	10.0					
L			0.0	0.0							

61	491.995M	32.3	-28.0	+5.8	+2.3	+18.5	+0.0	33.6	46.0	-12.4	Horiz
			+0.3	+2.4	+0.0	+0.0					
			+0.0	+0.0							
62	427.950M	33.2	-27.6	+5.8	+2.2	+17.4	+0.0	33.5	46.0	-12.5	Vert
			+0.3	+2.2	+0.0	+0.0					
			+0.0	+0.0							
63	120.650M	37.0	-27.0	+5.8	+1.1	+12.1	+0.0	30.3	43.5	-13.2	Vert
			+0.2	+1.1	+0.0	+0.0					
			+0.0	+0.0							
64	348.000M	33.6	-26.9	+5.8	+2.0	+15.6	+0.0	32.4	46.0	-13.6	Vert
			+0.3	+2.0	+0.0	+0.0					
			+0.0	+0.0							
65	162.450M	37.7	-26.9	+5.8	+1.3	+10.4	+0.0	29.8	43.5	-13.7	Horiz
			+0.2	+1.3	+0.0	+0.0					
			+0.0	+0.0							
66	161.750M	37.6	-26.9	+5.8	+1.3	+10.5	+0.0	29.8	43.5	-13.7	Vert
			+0.2	+1.3	+0.0	+0.0					
			+0.0	+0.0							
67	125.000M	36.1	-27.0	+5.8	+1.1	+12.2	+0.0	29.5	43.5	-14.0	Vert
			+0.2	+1.1	+0.0	+0.0					
			+0.0	+0.0							
68	163.800M	37.1	-26.9	+5.8	+1.3	+10.3	+0.0	29.1	43.5	-14.4	Vert
			+0.2	+1.3	+0.0	+0.0					
			+0.0	+0.0							
69	336.000M	32.7	-26.8	+5.8	+1.9	+15.3	+0.0	31.1	46.0	-14.9	Vert
			+0.3	+1.9	+0.0	+0.0					
			+0.0	+0.0							
70	116.525M	35.5	-27.0	+5.8	+1.1	+11.8	+0.0	28.5	43.5	-15.0	Vert
			+0.2	+1.1	+0.0	+0.0					
			+0.0	+0.0							
71	154.050M	34.9	-26.9	+5.8	+1.3	+11.2	+0.0	27.8	43.5	-15.7	Vert
		-	+0.2	+1.3	+0.0	+0.0		-			
			+0.0	+0.0							
72	216.025M	35.5	-26.7	+5.8	+1.5	+11.1	+0.0	28.9	46.0	-17.1	Horiz
		'	+0.2	+1.5	+0.0	+0.0					
			+0.0	+0.0							
l											

73	192.000M	34.6	-26.8	+5.8	+1.4	+9.6	+0.0	26.3	43.5	-17.2	Vert
			+0.2	+1.5	+0.0	+0.0					
			+0.0	+0.0							
74	64.050M	35.2	-27.2	+5.8	+0.7	+6.9	+0.0	22.4	40.0	-17.6	Horiz
			+0.2	+0.8	+0.0	+0.0					
			+0.0	+0.0							
75	1125.050M	47.5	+0.0	+0.0	+0.0	+0.0	+0.0	34.7	54.0	-19.3	Vert
			+0.0	+3.8	-41.3	+22.4					
			+0.4	+1.9							
76	1000.100M	47.7	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	54.0	-20.7	Vert
			+0.0	+3.5	-42.0	+21.9					
			+0.4	+1.8							
77	1375.000M	43.6	+0.0	+0.0	+0.0	+0.0	+0.0	33.3	54.0	-20.7	Vert
			+0.0	+4.3	-40.3	+23.2					
			+0.4	+2.1							
78	1000.250M	47.4	+0.0	+0.0	+0.0	+0.0	+0.0	33.0	54.0	-21.0	Horiz
			+0.0	+3.5	-42.0	+21.9					
			+0.4	+1.8							
79	1500.100M	41.6	+0.0	+0.0	+0.0	+0.0	+0.0	32.0	54.0	-22.0	Vert
			+0.0	+4.5	-40.2	+23.5					
			+0.4	+2.2							
L											

Test Setup Photos

30MHz – 1GHz

30MHz – 1GHz

1 - 12GHz

1 - 12GHz

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter			
4.73 dB	Radiated Emissions			
3.34 dB	Mains Conducted Emissions			
3.30 dB	Disturbance Power			

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS								
	Meter reading (dBµV)							
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBµV/m)						

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	TEST BEGINNING FREQUENCY		BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.